Review

Medicinal properties of *Moringa oleifera*: An overview of promising healer

Fozia Farooq¹, Meenu Rai², Avinash Tiwari¹, Abdul Arif Khan³ and Shaila Farooq⁴

¹School of Studies in Botany, Jiwaji University, Gwalior-474001 (MP), India.
²Life Science Department, Vijayaraje Institute of Science and Management, Turari, NH 75, Gwalior (MP), India.
³Department of Pharmaceutics, College of Pharmacy, P. O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia.
⁴School of Studies in Biotechnology, Jiwaji University, Gwalior-474001 (MP), India.

Accepted 3 May, 2012

Moringa oleifera Lam. (*MO*) is a small size tree with approximately 5 to 10 m height. It is cultivated all over the world due to its multiple utilities. Every part of *Moringa* is used for certain nutritional and/or medicinal propose. Besides being a good source of protein, vitamins, oils, fatty acids, micro-macro minerals elements and various phenolics, it is also reported as anti-inflammatory, antimicrobial, antioxidant, anticancer, cardiovascular, hepatoprotective, anti-ulcer, diuretic, antiurolithiatic, and antihelmintic. Its multiple pharmaceutical effects are capitalized as therapeutic remedy for various diseases in traditional medicinal system. Further research on this charismatic healer may lead to the development of novel agents for various diseases. This study provides a brief overview about medicinal potential of *Moringa* and its future as a component of modern medicinal system. This study concludes that *Moringa* needs legitimate appraisal to establish its pharmaceutical knack in modern medicine.

Key word: *Moringa oleifera*, medicinal plant, anti-inflammatory, anti-microbial, antioxidant, antiulcer, diuretic.

INTRODUCTION

Moringa oleifera (*MO*) is an aboriginal of Indian subcontinent and has become naturalized in the tropical and subtropical areas around the world. Nearly thirteen species of *Moringa* are included in the family *Moringaceae* (Nadkarni, 1976). Indians have been using it as a regular component of conventional eatables for nearly 5000 years (Anwar et al., 2005; Anwar and Bhanger, 2003; D’Souza and Kulkarni, 1993). *Moringa* tree can grow well in the humid tropic or hot dry land with average height that ranges from 5 to 10 m. It can survive in harsh climatic condition including destitute soil without being much affected by drought (Morton, 1991). It can tolerate wide range of rainfall requirements estimated at 250 mm and maximum at over 3000 mm and a pH of 5.0 to 9.0 (Palada and Chang, 2003). Its trunk is soft, white corky and branches bearing a gummy bark. Each tripinnately compound leaves bear several small leaf legs. The flowers are white and the three wings seeds are scattered by the winds. The flowers, tenders leaves and pods are eaten as vegetables. The leaves are rich in iron and therefore highly recommended for expected mothers. In some part of the world, *MO* is referred to as the ‘drum stick tree’ or the ‘horse radish tree’, whereas in others, it is known as the kelor, marango, mlonge, moonga, mulangay, nebeday, saijhan, sajna or Benui tree (Anwar and Bhanger, 2003; Prabhu et al., 2011). In India and Pakistan, *MO* is locally known as Sohanjna and is grown and cultivated all over the country (Anwar et al., 2005; Qaisar, 1973). It has been reported by Bureau of plant industry that *Moringa* is an outstanding source nutritional components. Its leaves (weight per weight) have the calcium equivalent of four times that of milk, the vitamin C content is seven times that of oranges, while its potassium is three times that of bananas, three times the iron of spinach, four times the amount of vitamin A in carrots, and two times the protein in milk (Kamal, 2008). Besides, *Moringa* is also suggested as a viable
supplement of dietary minerals. The pods and leaves of Moringa contains high amount of Ca, Mg, K, Mn, P, Zn, Na, Cu, and Fe (Aslam et al., 2005). Although, minerals content of Moringa shows variation in composition with changes in location (Anjorin et al., 2010).

Ancient medicinal system relies on several plant products used by traditionally human communities in many parts of the world for different diseases. Among these plants, MO has its great contribution from ancient time. It is a plant with exceptional medicinal properties which can resolves the health care needs in several situations. Easy cultivation of Moringa within adverse environmental condition and wide availability attract attention for economic and health related potential in resource limited developing countries. This study discusses medicinal potential of this exceptional plant and its potential as a commercial medicinal and nutritional supplement.

MEDICINAL PROPERTIES OF MORINGA

MO has enormous medicinal potential, which has long been recognized in the Ayurvedic and Unani system (Mughal et al., 1999). Nearly every part of this plant, including root, bark, gum, leaf, fruit (pods), flowers, seed, and seed oil have been used for various ailments in the indigenous medicine (Odebiyi and Sofowora, 1999), but recent research is also indicating about several active constituents for accepting its applaudability in modern medicine (Table 1). Few representatives of these are discussed in this article.

Antimicrobial and antihelmintic effects

Antimicrobial components of MO have been validated after the discovery of inhibitory activity against several microorganisms. In a recent study, aqueous extracts of MO was found to be inhibitory against many pathogenic bacteria, including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa in dose dependent manner (Saadabi and Abu Zaid, 2011). MO extracts was also found to be inhibitory against Mycobacterium phlei and B. subtilis (Ellert et al., 1981). Leaf extract of MO was found to be effective in checking growth of fungi Basidiobolus haptosporus and Basidiobolus ranarums (Nwosu and Okafor, 1995). Another study involving aqueous methanolic extract and fixed oil against microorganisms were performed using Scenedesmus obliquus (green algae), E. coli ATCC 13706, P. aeruginosa ATCC10145, S. aureus NAMRU 3 25923, Bacillus steaothermophilus (bacterial strains) and Herpes Simplex virus type 1 (HSV 1) and Polio virus type 1 (sabin vaccine). Varying degree of antimicrobial activity was observed ranging from sensitive for B. steaothermophilus to resistant for P. aeruginosa (Ali et al., 2004). Beside antibacterial activity of MO oils, it also posses anti-fungal activity (Chuang et al., 2007). Study comparing relative antimicrobial activity of seed extracts against bacteria (Pasturella multocida, E. coli, B. subtilis and S. aureus) and fungi (Fusarium solani and Rhizopus solani) revealed that P. multocida and B. subtilis were the most sensitive strains, and their activity was influenced by cations (Na\(^+\), K\(^+\), Mg\(^2+\) and Ca\(^{2+}\)) (Jabeen et al., 2008). Another relative comparison of antibacterial and antifungal efficency of MO steam distillate observed more inhibition for E. coli followed by S. aureus, Klebsiella pneumoniae, P. aeruginosa and B. subtilis. In case of fungi, Aspergillus niger was strongly inhibited followed by Aspergillus oryzae, Aspergillus terreus and Aspergillus nidulans (Prashith Kekuda et al., 2010). Contrary to resistance against P. aeruginosa and Candida albicans for MO in other studies, one study using ethanolic extract of leaves, seeds and flowers showed the antimicrobial activity against E. coli, K. pneumoniae, Enterobacter species, Proteus mirabilis, P. aeruginosa, Salmonella typhi A, S. aureus, Streptococcus and Candida albicans (Nepolean et al., 2009). Moringa contains pterygospermin (originally found in Moringa pterygosperma) which has powerful antibacterial and fungicidal effects (Rao et al., 1946). Several other specific components of Moringa have been reported with antibacterial activity, including 4-(4′-O-acetyl-a-L-rhamnopyranosyl)benzyl isothiocyanate, 4-(a-L-rhamnopyranosyl) benzyl isothiocyanate, niazimicin, benzyl isothiocyanate, and 4-(a-L-rhamnopyranosyl)benzyl glucosinolate (Fahey, 2005). Other bioactive compounds, such as Spirochin and Anthonine are found in root and are active against several bacteria. Anthonine has potent inhibitory activity against Vibrio cholerae (Nwosu and Okafor, 1995). MO flower and leaves are also capable of controlling parasitic worms, their antihelmintic activity has been demonstrated during several studies (Bhattacharya et al., 1982). Moreover, it has also been reported to inhibit Indian earthworm Pheritima posthuma with MO leaves ethanolic extracts (Rastogi et al., 2009).

Anti-inflammatory activity

Moringa plant parts have substantial anti-inflammatory activity. For instance, the root extract exhibits significant anti-inflammatory activity in carrageenan induced rat paw oedema (Ezeamuzie et al., 1996; Khare et al., 1997). The crude methanol extract of the root inhibits carrageenan-induced rat paw oedema in a dose dependent manner after oral administration (Anonymous, 2005). Moreover, n-butanol extract of the seeds of MO shows anti-inflammatory activity against ovalbumin-induced airway inflammation in guinea pigs (Mahajan et al., 2009). Amelioration of inflammation associated chronic diseases can be possible with the potent anti-inflammatory activity of MO bioactive compounds (Muangnoi et al., 2011).

Farooq et al. 4369
Considering potent anti-inflammatory activity of *Moringa* plant, it can be surmised that this plant shows profound influence on inflammation associated diseases and resultant symptoms. As a consequence, this plant shows beneficial effects on asthma, pain, and other resultant symptoms.

Anti-asthmatic activity

It has been reported a long time ago that *Moringa* plant alkaloid closely resembles ephedrine in action and can be used for the treatment of asthma. Alkaloid moringine relaxes bronchioles (Kirtikar and Basu, 1975). The seed kernels of *MO* also showed promising effect in the treatment of bronchial asthma, during a study to analyze efficacy and safety of seed kernels for the management of asthmatic patients. The study showed significant decrease in the severity of asthma symptoms and also concurrent respiratory functions improvement (Agrawal and Mehta, 2008).

Analgesic activity

The analgesic activity of *Moringa* has been reported in several *Moringa* species. In a study using ethanolic extracts of *Moringa concanensis* tender pod-like fruits in experimental animals, a significant analgesic activity was observed (Rao et al., 2008). Furthermore, alcoholic extract of the leaves and seeds of *MO* also possess marked analgesic activity as evidenced through hot plate and tail immersion method (Sutar et al., 2008).

Antipyretic activity

As a result of anti-inflammatory action of *Moringa* bioactive constituents, the antipyretic activity can be hypothesized. A study was designed to assess antipyretic effect of ethanol, petroleum ether, solvent ether and ethyl acetate extracts of *MO* seeds showed significant antipyretic during the study. Not surprisingly, ethanol and ethyl acetate extracts of seeds also possess marked antipyretic activity as evidenced through hot plate and tail immersion method (Sutar et al., 2008).

Antidiabetic activity

Several medicinal plants have been evaluated for their potential as therapeutic agent for diabetes. *MO* is also an important component in this category. *MO* leaves significantly decrease blood glucose concentration in Wistar rats and Goto-Kakizaki (GK) rats, modeled type 2 diabetes (Ndong et al., 2007). Another study indicated that the extract from *Moringa* leaf is effective in lowering blood sugar levels within 3 h after ingestion (Mittal et al., 2007). As a mechanistic model for antidiabetic activity of *MO*, it has been indicated that dark chocolate polyphenols (Grassi et al., 2005) and other polyphenols (Al-Awwadi et al., 2004; Moharram et al., 2003) are responsible for hypoglycemic activity. *Moringa* leaves are potent source of polyphenols, including quercetin-3-glycoside, rutin, kaempferol glycosides, and other polyphenols (Ndong et al., 2007). Thus, potential anti-diabetic activity of *MO* can be commercialized through the development of suitable technology with achieving anti-diabetic activity up to conventional drugs.

Antioxidant activity

MO is a rich source of antioxidant (Chumark et al., 2008). It has been reported that aqueous extracts of leaf, fruit and seed of *MO* act as an antioxidant (Singh et al., 2009). During a study reporting antioxidant property of freeze dried *Moringa* leaves from different extraction procedures, it was found that methanol and ethanol extracts of Indian origin *MO* have the highest antioxidant activity with 65.1 and 66.8%, respectively (Lalas and Tsaknis, 2002; Siddhuraju and Becker, 2003). It was also reported that the major bioactive compounds of phenolics, such as quercetin and kaempferol are responsible for antioxidant activity (Bajpai et al., 2005; Siddhuraju and Becker, 2003). During another study, quercetin and kaempferol have shown good antioxidant activity on hepatocyte growth factor (HGF) induced Met phosphorylation with IC₅₀ value for 12 and ~6 µM/L, respectively (Labbe et al., 2009). Another recent study comparing palm oil with *MO* seeds for their antioxidant potential found out that *MO* seed are superiors for radical scavenging (Ogbunugafor et al., 2011).

Hepatoprotective activity

MO has shown significant hepatoprotective activity in
several studies. MO leaves ethanolic extracts showed significant protection against liver damage induced by antitubercular drugs [isoniazid (INH), rifampicin (RMP), and pyrazinamide (PZA)] in rats. It was found that hepatoprotective activity of MO is mediated by its effect on the levels of glutamic oxaloacetic transaminase (aspartate aminotransferase), glutamic pyruvic transaminase (alanine aminotransferase), alkaline phosphatase, and bilirubin in the serum; lipids, and lipid peroxidation levels in liver (Pari and Kumar, 2002). Moreover, methanolic and chloroform extracts of MO leaves also showed significant protection against CCl4 induced liver damage in albino rats. Besides hepatoprotective activity of MO leaves, its root and flowers also possess strong hepatoprotective activity.

Moringa flowers contain a well recognized flavonoid (Quercetin), which may be responsible for its potent hepatoprotective activity (Ruckmani et al., 1998; Selvakumar and Natarajan, 2008). In a recent study evaluating the effect of MO seed extract on liver fibrosis, it was found that MO seed extract has the ability to subside liver fibrosis. This study involved CCl4 induced liver fibrosis and concurrent administration of MO seed extract. MO seed extract control the elevation of serum aminotransferase activities and globulin level induced by CCl4. Moreover, immunohistochemical studies also showed that MO reduces liver fibrosis (Hamza, 2010).

Antitumor activity

MO has been found as a potent anticancer plant and several bioactive compounds with significant antitumor activity have been discovered from MO. Among bioactive compounds from MO, niazimicin, a MO leaves thiocarbamate was found to have potent anticancer activity (Guevaraa et al., 1999). Furthermore, niazimicin also shows the inhibition of tumor promoter teleocidin B-4-induced Epstein-Barr virus (EBV) activation (Murakami et al., 1998). Another study involving 11 plants used in Bangladeshi folk medicine, MO was considered as potential source of anticancer compounds. During this study, the plant extract were analyzed for cytotoxicity through brine shrimp lethality assay, sea urchin eggs assay, hemolysis assay and MTT assay using tumor cell lines. The study also indicated the potential cytotoxic effects of MO leaf extract on human multiple myeloma cell lines (Costa-Lotufo et al., 2005; Parvathy and Uمامaheshwari, 2007). Beside leaves, MO seed extracts also have anticancer activity through its effects on hepatic carcinogen metabolizing enzymes, and antioxidant property (Bharali et al., 2003).

Antifertility activity

MO plant also has pertinent antifertility activity. The aqueous extract obtained from root and bark of MO showed post-coital antifertility effect in rat and also induced foetal resorption at late pregnancy (Prakash et al., 1987). Moreover, aqueous extract of MO roots was also evaluated for estrogenic, anti-estrogenic, progesterational and antiprogestational activities. This extract induces several consequences for affecting its antifertility property (Shukla et al., 1988). During another study analyzing anti reproductive potential of folk medicine plants, MO leaf extract were found to be 100% abortive with doses equivalent to 175 mg/kg of starting dry material (Nath et al., 1992).

Antispasmodic and antiulcer effects

Moringa root and leaves contain several compounds with spasmyloytic activity. These compounds include 4- (alpha-L-rhamnosyloxybenzyl)-o-methyl thiocarbamate which is possibly affected through calcium channel blockade, niazinin A, niazinin B, niazimicin, etc., with hypotensive and bradycardiac effect. The spasmyloytic activity of different constituents support for traditional uses of this plant in gastrointestinal motility disorder (Gilani et al., 1994). MO methanolic extract is also capable in protecting experimental rats from gastric lesions induced by acetylsalicylic acid, serotonin and indomethacin. In addition, it also enhances healing process of chronic gastric lesions induced by acetylsalicylic acid in experimental animals (Pal et al., 1995). Another study have reported the antifertility effect of MO leaves aqueous extract on adult Holtzman albino rats (Debnath and Guha, 2007).

Cardiac and circulatory stimulant

In addition to earlier mentioned bradycardiac effect of MO leaves, all parts of MO are reported with somewhat cardiac and circulatory stimulant activity. Root bark of Moringa contains alkaloid moringinine which acts as cardiac stimulant through its effect on sympathetic nervous system (Duke, 2001). The aforementioned effects can also result due to the prevention of hyperlipidemia. It has been demonstrated that MO prevent hyperlipidemia in male Wister rat due to iron deficiency (Ndong et al., 2007). During a study performing comparison of MO leaf extract with antenolol (a selective β1 receptor antagonist drug, used for cardiovascular diseases) on serum cholesterol level, serum triglyceride level, blood glucose level, heart weight and body weight of adrenaline induced rats, it was found that MO leaf extract cause significant changes in cardiovascular parameters. This study reported MO leaf extract as hypolipidimic, lowering body weight, heart weight, serum triglyceride level and serum cholesterol level in experimental animals (Ara et al., 2008). In addition to the aforementioned studies, antiatherosclerotic and hypolipidaemic effect of MO leaves were also
Table 1. Major pharmaceutical components present in *Moringa* and their importance.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Compound</th>
<th>Method used for detection</th>
<th>Potential application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pterygospermin</td>
<td>Solvent extraction followed by MIC analysis</td>
<td>Antibacterial and fungicidal effects</td>
<td>Rao et al. (1946)</td>
</tr>
<tr>
<td>2</td>
<td>4-(4'-O-acetyl-a-L-rhamnopyranosyloxy) benzyl isothiocyanate, 4-(a-L-</td>
<td>Solvent extraction followed by MIC analysis (Busani et al., 2012)</td>
<td>Antibacterial</td>
<td>Fahey (2005) and Nwosu and Okafor (1995)</td>
</tr>
<tr>
<td></td>
<td>rhamnopyranosyloxy) benzyl isothiocyanate, niazimicin, benzyl isothio-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cyanate, and 4-(a-L-rhamnopyranosyloxy) benzyl glucosinolate, Anthoine-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n and Spirochin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Alkaloid Moringine</td>
<td>Clinical study involving consumption of Moringa followed by antiasthmatic activity</td>
<td>Antiasthmatic</td>
<td>Agrawal and Mehta (2008) and Kirtikar and Basu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>evaluation using spirometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nitrile, mustard oil glycides and thiocarbamate glycosides</td>
<td>Bioassay directed isolation</td>
<td>Hypotensive</td>
<td>Anwar et al. (2007) and Faizi et al. (1995)</td>
</tr>
<tr>
<td>5</td>
<td>b-sitosterol</td>
<td>Study involved consumption of Moringa leaves with cholesterol and subsequent measurement of cholesterol lowering activity (Ghasi et al., 2000).</td>
<td>Cholesterol lowering effects</td>
<td>Ghasi et al. (2000)</td>
</tr>
<tr>
<td>6</td>
<td>Dark chocolate polyphenols and other polyphenols</td>
<td>Administration of MO leaves in diabetic and control rats and hypoglycemic activity evaluation and characterization of polyphenols using HPLC (Ndong et al., 2007).</td>
<td>Hypoglycemic effects</td>
<td>Grassi et al. (2005), Al-Awwadi et al. (2004) and Moharram et al. (2003)</td>
</tr>
<tr>
<td>7</td>
<td>Quecertin and kaempferol</td>
<td>Solvent extraction followed by antioxidant activity analysis</td>
<td>Antioxidant, hepatoprotective</td>
<td>Bajpai et al. (2005), Siddhuraju and Becker (2003), Ruckmani et al. (1998) and Selvakumar and Natarajan (2008)</td>
</tr>
<tr>
<td>8</td>
<td>Niazimicin,</td>
<td>Solvent extraction followed by in vitro anticancer activity</td>
<td>Anticancer</td>
<td>Guevaraa et al. (1999)</td>
</tr>
<tr>
<td>9</td>
<td>4- (alpha-L-rhamnosylbenzyl)-o-methyl thiocarbamate, niazinin A, niazini-</td>
<td>Solvent extraction for purification of compounds followed by intravenous administration of each compound in anaesthetized rats and subsequent evaluation of their activity in experimental animals</td>
<td>Spasmolytic, hypotensive and bradycardiac</td>
<td>Gilani et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>n B, niazimicin etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

analyzed in another study using simvastatin as control (Chumark et al., 2008). *MO* also causes cardio protective effects in isoproterenol (ISP)-induced myocardial infarction in male Wistar albino rats. It was reported that *MO* treatment plays favorable modulation on biochemical enzymatic parameters including, superoxide dismutase, catalase, glutathione peroxidase, lactate dehydrogenase, and creatine kinase-MB. Moreover, it also prevents histopathological damage and ultra-structure perturbation caused due to ISP induced myocardial infarction.
In ocular diseases

Vitamin A deficiency is a major cause of blindness, which ranges from impaired dark adaptation to night blindness. Consumption of MO leaves, and pods and leaf powder which contain high proportion of vitamin A can help to prevent night blindness and eye problems in children. Ingesting drumstick leaves with oils can improve vitamin A nutrition and can delay the development of cataract (Pullakhandam and Failla, 2007). In fact the use of MO as a supplementary food was highly accepted for integrated child development scheme supplementary food (ICDS-SFP) for its potential as vitamin A source (Nambiar et al., 2003).

Conclusion

Medicinal potential of MO is enormous and difficult to cover in a single article, despite this current article provided glimpses of MO applications for performing appraisal of this promising nutrition and medicinal plant. Although, many bioactive compounds have been discovered from Moringa, still the knowledge is in infancy, in term of its total reserve. Perhaps, future rigorous studies directed towards the detection, and commercialization of MO bioactive compounds can lead to the development of remedies for several ailments. Thus, it can also prove the validity of traditional utility of MO in various folklores.

REFERENCES

Miracle Trees

Nutr. 139:646-652.